Alloy Design for a Fusion Power Plant
نویسنده
چکیده
Fusion power is generated when hot deuterium and tritium nuclei react, producing alpha particles and 14 MeV neutrons. These neutrons escape the reaction plasma and are absorbed by the surrounding material structure of the plant, transferring the heat of the reaction to an external cooling circuit. In such high-energy neutron irradiation environments, extensive atomic displacement damage and transmutation production of helium affect the mechanical properties of materials. Among these effects are irradiation hardening, embrittlement, and macroscopic swelling due to the formation of voids within the material. To aid understanding of these effects, Bayesian neural networks were used to model irradiation hardening and embrittlement of a set of candidate alloys, reduced-activation ferritic-martensitic steels. The models have been compared to other methods, and it is demonstrated that a neural network approach to modelling the properties of irradiated steels provides a useful tool in the future engineering of fusion materials, and for the first time, predictions are made on irradiated property changes based on the full range of available experimental parameters rather than a simplified model. In addition, the models are used to calculate optimised compositions for potential fusion alloys. Recommendations on the most fruitful ways of designing future experiments have also been made. In addition, a classical nucleation theory approach was taken to modelling the incubation and nucleation of irradiation-induced voids in these steels, with a view to minimising this undesirable phenomenon in candidate materials.
منابع مشابه
Reliability and Availability Analysis of Fusion Power Plants
Major efforts are underway to develop fusion energy for use in electric power production in the furture. While fusion reactor concepts are being developed, appropriate attention must be given to problems relvant to the utility requirements which are likely to be encountered in the commercialization phase. In this paper the expected fusion plant availability is assessed in detail due to the impo...
متن کاملEngineering Options for the U.S. Fusion Demo*
Through its successful operation, the U.S. Fusion Demo must be sufficiently convincing that a utility or independent power producer will choose to purchase one as its next electric generating plant. A fusion power plant which is limited to the use of currently-proven technologies is unlikely to be sufficiently attractive to a utility unless fuel shortages and regulatory restrictions are far mor...
متن کاملUWFDM-959 Evolution of Light Ion Driven Fusion Power Plants Leading to the LIBRA-SP Design
The use of light ion or electron beams to compress matter to the densities required for fusion has been proposed for more than 20 years. In the past ten years, a series of light ion beam power plant conceptual designs have been published under the generic name LIBRA. Considerable advances in both physics and technology have allowed major improvements from the design performance of the earliest ...
متن کاملProspects for attractive fusion power systems
As one of the alternative sources of energy for the future, fusion power must demonstrate that it can be a safe, clean and economically attractive option in a diverse and competitive energy marketplace. Conceptual power-plant design studies for both magneticand inertial-confinement approaches allows one to translate commercial requirements into design features that must be met if fusion is to p...
متن کاملUWFDM-1214 A Passively Proliferation-Proof Fusion Power Plant
This paper investigates whether a fusion power plant could be designed to be passively proliferation-proof. Even low neutron production rates enable fissile-fuel breeding, so such a fusion reactor must burn neutron-lean fuels. To burn these fuels economically requires a highpower-density fusion concept, and a D-He field-reversed configuration will be analyzed here. The paper discusses physics a...
متن کامل